Answer the question
In order to leave comments, you need to log in
How to calculate the recovery operator of a periodized wavelet basis?
Hello, here https://ecm.univ-rennes1.fr/nuxeo/site/esupversion... (pdf, 14mb) on p. 42 shows the operator Phi , and says that it contains all the values of the basis functions (scaling and wavelet functions) for a given x . Also, a little more about this operator is indicated in the article www.irisa.fr/fluminance/publi/papers/2012_NMTMA_De...
For example, let's take an image with a size of 256x256 and Daubechies wavelets 'db10', the basis is periodized.
Actually, I'm interested in how to calculate this Phi matrix.
I would be grateful for any help and tips on the topic.
Answer the question
In order to leave comments, you need to log in
Обратная матрица позволит восстановить изначальный сигнал(например, изображение).
А сама матрица вроде бы получается из коэффициентов используемого базиса вейвлета. Например Добеши 10, а эти коэффициенты есть в таблицах Вейвлеты Добеши(Википедия)
Также на хабре есть небольшая статейка
Есть еще книжка Добеши Ингрид "Десять лекций по вейвлетам"
Didn't find what you were looking for?
Ask your questionAsk a Question
731 491 924 answers to any question