Answer the question
In order to leave comments, you need to log in
How to take out a factor from under the root for a set of complex numbers?
Interested in the next one. There are two complex numbers a and b. Can I write that sqrt(a*b) = sqrt(a) * sqrt(b) ?
For operations on real numbers, such a notation is incorrect - taking the modulo is required. For complex numbers, the use of the module seems to be wrong.
But at the same time 1 = sqrt( (-1)*(-1)) =?= sqrt( -1) * sqrt(-1) = i * i = -1
If we take the module 1 = sqrt( (-1)* (-1)) = sqrt( |-1|) * sqrt(|-1|) = 1, but then:
i = sqrt(-1) = sqrt( (-1) * 1) = sqrt( |-1 |) * sqrt(|1|) = 1
Answer the question
In order to leave comments, you need to log in
Для комплексных чисел квадратный корень (степень 1/2) неоднозначная функция, так как аргумент (угол) тоже неоднозначен. Напр., для -1 есть угол pi, тогда (-1)^(1/2) будет иметь угол pi/2, но это также угол -pi, тогда квадратный корень даст угол -pi/2.
Didn't find what you were looking for?
Ask your questionAsk a Question
731 491 924 answers to any question