N
N
NikitoZ Sc.2015-02-14 20:02:53
Arduino
NikitoZ Sc., 2015-02-14 20:02:53

How to make SoftwareSerial and Servo friends?

Does anyone know how to get these libraries to work together, or is there some other alternative?
Situation: Arduino Nano, NEO-6M as a GPS receiver, a bunch of servos, 3 I2C modules. There is only one hardware UART, and it is busy. Another one was made through SoftwareSerial, to which GPS is connected.
After turning on, all servos with an interval of 1 second go to the leftmost position / return to the center. With GPS disabled, there is no such problem.
I googled that SoftwareSerial globally disables interrupts when receiving/sending a byte to ensure correct timings. But it also freezes all the timers that the Servo library is based on. Hence the problem.
Tried instead of Servo SoftwareServo, PWMServo, ServoTimer2 - didn't help. The maximum that was achieved was that with ServoTimer2, instead of one jump, the servos made 3 jumps per second, standing at 45 degrees from the center :)
Has anyone solved a similar question in any way?
The code is not all, there are about a dozen files. But work with UART and Servo is being done here.

#include <Wire.h>
#include <Ultrasonic.h>
#include <LSM303.h>
#include <Servo.h>
#include <TinyGPS.h>
#include <SoftwareSerial.h>

//PWM port pins
#define ELERON 7
#define RUDDER 9
#define ELEVATOR 8
#define THROTTLE 6

//servo angle const
#define MIN_ELER 40
#define MAX_ELER 140
#define MIN_RUDD 40
#define MAX_RUDD 140
#define MIN_ELEV 40
#define MAX_ELEV 140
#define MIN_THRO 60
#define MAX_THRO 120
#define START_THRO 65

//other device pins
#define S_LED 10
#define E_LED 13

//sensors init
#define VLEVEL A0
LSM303 compass;
Ultrasonic usonar(3, 2);
TinyGPS gps;
SoftwareSerial gps_serial(2, 3);

//PWM device init
Servo Eler;
Servo Rudd;
Servo Elev;
Servo Thro;

//servo correction angles
int eler_d;
int rudd_d;
int elev_d;

//PID parameters
double eler_kp;
double eler_ki;
double eler_kd;
double rudd_kp;
double rudd_ki;
double rudd_kd;
double elev_kp;
double elev_ki;
double elev_kd;

//navigation vars
float d_latitude;
float d_longitude;
float d_altitude;
float d_course;
float c_latitude;
float c_longitude;
long c_altitude;
float c_course;
float c_speed;

//vars
long currentTime;
long previousTime;
long deltaTime;
byte frameCounter;

void setup() {
  //pins init
  pinMode(S_LED, OUTPUT);
  pinMode(E_LED, OUTPUT);
  //serials init
  Serial.begin(57600);
  gps_serial.begin(9600);
  while (!Serial) {
    digitalWrite(E_LED, 1);
    delay(100);    
    digitalWrite(E_LED, 0);
    delay(100);
  }
  //compass init
  Wire.begin();
  compass.init(LSM303DLHC_DEVICE, LSM303_SA0_A_HIGH);
  compass.enableDefault();
  //PWM init
  Eler.attach(ELERON);
  Rudd.attach(RUDDER);
  Elev.attach(ELEVATOR);
  Thro.attach(THROTTLE);
  Eler.write(90);
  Rudd.write(90);
  Elev.write(90);
  Thro.write(60); //65 to start, max = 120, afterburner (speed test) = 180;
  readPWMDelta();
  //vars init
  frameCounter = 0;
  //all hardware is ready, say about it:)
  Serial.println("HW OK");
  Serial.print("FREE:");
  Serial.println(getFreeRam());
}

void loop() {
  currentTime = micros();
  deltaTime = currentTime - previousTime;
  if (deltaTime >= 10000) {    
    frameCounter++;    
    //process100HzTask(); 
    if (frameCounter % 2 == 0) {
      //process50HzTask();
    }
    if (frameCounter % 10 == 0) {
      //process10HzTask();
      //if (Serial.available() > 0) {
        //parseCommand();  
      //}
    }
    if (frameCounter % 100 == 0) {
      //process1HzTask(); 
    }    
    previousTime = currentTime;
  }
  if (frameCounter >= 100) {
      frameCounter = 0;
  }
}

Answer the question

In order to leave comments, you need to log in

1 answer(s)
N
NikitoZ Sc., 2015-02-14
@Niki-Z

Whole library:

#if defined(ARDUINO_ARCH_AVR)

#include <avr/interrupt.h>
#include <Arduino.h>

#include "Servo.h"

#define usToTicks(_us)    (( clockCyclesPerMicrosecond()* _us) / 8)     // converts microseconds to tick (assumes prescale of 8)  // 12 Aug 2009
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds


#define TRIM_DURATION       2                               // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009

//#define NBR_TIMERS        (MAX_SERVOS / SERVOS_PER_TIMER)

static servo_t servos[MAX_SERVOS];                          // static array of servo structures
static volatile int8_t Channel[_Nbr_16timers ];             // counter for the servo being pulsed for each timer (or -1 if refresh interval)

uint8_t ServoCount = 0;                                     // the total number of attached servos


// convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / SERVOS_PER_TIMER)) // returns the timer controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % SERVOS_PER_TIMER)       // returns the index of the servo on this timer
#define SERVO_INDEX(_timer,_channel)  ((_timer*SERVOS_PER_TIMER) + _channel)     // macro to access servo index by timer and channel
#define SERVO(_timer,_channel)  (servos[SERVO_INDEX(_timer,_channel)])            // macro to access servo class by timer and channel

#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4)  // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4)  // maximum value in uS for this servo

/************ static functions common to all instances ***********************/

static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t *TCNTn, volatile uint16_t* OCRnA)
{
  if( Channel[timer] < 0 )
    *TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
  else{
    if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && SERVO(timer,Channel[timer]).Pin.isActive == true )
      digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,LOW); // pulse this channel low if activated
  }

  Channel[timer]++;    // increment to the next channel
  if( SERVO_INDEX(timer,Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
    *OCRnA = *TCNTn + SERVO(timer,Channel[timer]).ticks;
    if(SERVO(timer,Channel[timer]).Pin.isActive == true)     // check if activated
      digitalWrite( SERVO(timer,Channel[timer]).Pin.nbr,HIGH); // its an active channel so pulse it high
  }
  else {
    // finished all channels so wait for the refresh period to expire before starting over
    if( ((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL) )  // allow a few ticks to ensure the next OCR1A not missed
      *OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
    else
      *OCRnA = *TCNTn + 4;  // at least REFRESH_INTERVAL has elapsed
    Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
  }
}

#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
// Interrupt handlers for Arduino
#if defined(_useTimer1)
SIGNAL (TIMER1_COMPA_vect)
{
  handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif

#if defined(_useTimer3)
SIGNAL (TIMER3_COMPA_vect)
{
  handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif

#if defined(_useTimer4)
SIGNAL (TIMER4_COMPA_vect)
{
  handle_interrupts(_timer4, &TCNT4, &OCR4A);
}
#endif

#if defined(_useTimer5)
SIGNAL (TIMER5_COMPA_vect)
{
  handle_interrupts(_timer5, &TCNT5, &OCR5A);
}
#endif

#elif defined WIRING
// Interrupt handlers for Wiring
#if defined(_useTimer1)
void Timer1Service()
{
  handle_interrupts(_timer1, &TCNT1, &OCR1A);
}
#endif
#if defined(_useTimer3)
void Timer3Service()
{
  handle_interrupts(_timer3, &TCNT3, &OCR3A);
}
#endif
#endif


static void initISR(timer16_Sequence_t timer)
{
#if defined (_useTimer1)
  if(timer == _timer1) {
    TCCR1A = 0;             // normal counting mode
    TCCR1B = _BV(CS11);     // set prescaler of 8
    TCNT1 = 0;              // clear the timer count
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
    TIFR |= _BV(OCF1A);      // clear any pending interrupts;
    TIMSK |=  _BV(OCIE1A) ;  // enable the output compare interrupt
#else
    // here if not ATmega8 or ATmega128
    TIFR1 |= _BV(OCF1A);     // clear any pending interrupts;
    TIMSK1 |=  _BV(OCIE1A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)
    timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
#endif
  }
#endif

#if defined (_useTimer3)
  if(timer == _timer3) {
    TCCR3A = 0;             // normal counting mode
    TCCR3B = _BV(CS31);     // set prescaler of 8
    TCNT3 = 0;              // clear the timer count
#if defined(__AVR_ATmega128__)
    TIFR |= _BV(OCF3A);     // clear any pending interrupts;
  ETIMSK |= _BV(OCIE3A);  // enable the output compare interrupt
#else
    TIFR3 = _BV(OCF3A);     // clear any pending interrupts;
    TIMSK3 =  _BV(OCIE3A) ; // enable the output compare interrupt
#endif
#if defined(WIRING)
    timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service);  // for Wiring platform only
#endif
  }
#endif

#if defined (_useTimer4)
  if(timer == _timer4) {
    TCCR4A = 0;             // normal counting mode
    TCCR4B = _BV(CS41);     // set prescaler of 8
    TCNT4 = 0;              // clear the timer count
    TIFR4 = _BV(OCF4A);     // clear any pending interrupts;
    TIMSK4 =  _BV(OCIE4A) ; // enable the output compare interrupt
  }
#endif

#if defined (_useTimer5)
  if(timer == _timer5) {
    TCCR5A = 0;             // normal counting mode
    TCCR5B = _BV(CS51);     // set prescaler of 8
    TCNT5 = 0;              // clear the timer count
    TIFR5 = _BV(OCF5A);     // clear any pending interrupts;
    TIMSK5 =  _BV(OCIE5A) ; // enable the output compare interrupt
  }
#endif
}

static void finISR(timer16_Sequence_t timer)
{
    //disable use of the given timer
#if defined WIRING   // Wiring
  if(timer == _timer1) {
    #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
    TIMSK1 &=  ~_BV(OCIE1A) ;  // disable timer 1 output compare interrupt
    #else
    TIMSK &=  ~_BV(OCIE1A) ;  // disable timer 1 output compare interrupt
    #endif
    timerDetach(TIMER1OUTCOMPAREA_INT);
  }
  else if(timer == _timer3) {
    #if defined(__AVR_ATmega1281__)||defined(__AVR_ATmega2561__)
    TIMSK3 &= ~_BV(OCIE3A);    // disable the timer3 output compare A interrupt
    #else
    ETIMSK &= ~_BV(OCIE3A);    // disable the timer3 output compare A interrupt
    #endif
    timerDetach(TIMER3OUTCOMPAREA_INT);
  }
#else
    //For arduino - in future: call here to a currently undefined function to reset the timer
#endif
}

static boolean isTimerActive(timer16_Sequence_t timer)
{
  // returns true if any servo is active on this timer
  for(uint8_t channel=0; channel < SERVOS_PER_TIMER; channel++) {
    if(SERVO(timer,channel).Pin.isActive == true)
      return true;
  }
  return false;
}


/****************** end of static functions ******************************/

Servo::Servo()
{
  if( ServoCount < MAX_SERVOS) {
    this->servoIndex = ServoCount++;                    // assign a servo index to this instance
  servos[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH);   // store default values  - 12 Aug 2009
  }
  else
    this->servoIndex = INVALID_SERVO ;  // too many servos
}

uint8_t Servo::attach(int pin)
{
  return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}

uint8_t Servo::attach(int pin, int min, int max)
{
  if(this->servoIndex < MAX_SERVOS ) {
    pinMode( pin, OUTPUT) ;                                   // set servo pin to output
    servos[this->servoIndex].Pin.nbr = pin;
    // todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
    this->min  = (MIN_PULSE_WIDTH - min)/4; //resolution of min/max is 4 uS
    this->max  = (MAX_PULSE_WIDTH - max)/4;
    // initialize the timer if it has not already been initialized
    timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
    if(isTimerActive(timer) == false)
      initISR(timer);
    servos[this->servoIndex].Pin.isActive = true;  // this must be set after the check for isTimerActive
  }
  return this->servoIndex ;
}

void Servo::detach()
{
  servos[this->servoIndex].Pin.isActive = false;
  timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
  if(isTimerActive(timer) == false) {
    finISR(timer);
  }
}

void Servo::write(int value)
{
  if(value < MIN_PULSE_WIDTH)
  {  // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
    if(value < 0) value = 0;
    if(value > 180) value = 180;
    value = map(value, 0, 180, SERVO_MIN(),  SERVO_MAX());
  }
  this->writeMicroseconds(value);
}

void Servo::writeMicroseconds(int value)
{
  // calculate and store the values for the given channel
  byte channel = this->servoIndex;
  if( (channel < MAX_SERVOS) )   // ensure channel is valid
  {
    if( value < SERVO_MIN() )          // ensure pulse width is valid
      value = SERVO_MIN();
    else if( value > SERVO_MAX() )
      value = SERVO_MAX();

    value = value - TRIM_DURATION;
    value = usToTicks(value);  // convert to ticks after compensating for interrupt overhead - 12 Aug 2009

    uint8_t oldSREG = SREG;
    cli();
    servos[channel].ticks = value;
    SREG = oldSREG;
  }
}

int Servo::read() // return the value as degrees
{
  return  map( this->readMicroseconds()+1, SERVO_MIN(), SERVO_MAX(), 0, 180);
}
int Servo::readMicroseconds()
{
  unsigned int pulsewidth;
  if( this->servoIndex != INVALID_SERVO )
    pulsewidth = ticksToUs(servos[this->servoIndex].ticks)  + TRIM_DURATION ;   // 12 aug 2009
  else
    pulsewidth  = 0;
  return pulsewidth;
}
bool Servo::attached()
{
  return servos[this->servoIndex].Pin.isActive ;
}
#endif // ARDUINO_ARCH_AVR

Didn't find what you were looking for?

Ask your question

Ask a Question

731 491 924 answers to any question