Answer the question
In order to leave comments, you need to log in
How long is the row for training neural networks?
I use something like a one-dimensional series for training a neural network, I select the coefficients of training epochs, but constantly one neuron takes almost everything, then another. A series of 1000 numbers.
%[old_path]=which('rdsamp'); if(~isempty(old_path)) rmpath(old_path(1:end-8)); end
%wfdb_url='https://physionet.org/physiotools/matlab/wfdb-app-matlab/wfdb-app-toolbox-0-10-0.zip';
%[filestr,status] = urlwrite(wfdb_url,'wfdb-app-toolbox-0-10-0.zip');
%unzip('wfdb-app-toolbox-0-10-0.zip');
%cd mcode
%addpath(pwd)
%savepath
cd D:\EGC\ptb-xl-a-large-publicly-available-electrocardiography-dataset-1.0.1\records100\00000
%cd C:\Users\Evgeny\Downloads\ptb-xl-a-large-publicly-available-electrocardiography-dataset-1.0.1\ptb-xl-a-large-publicly-available-electrocardiography-dataset-1.0.1\records100\00000
clc;
clear;
%Learning signals NORM
signal=[];
signalun=[];
fs=[];
[signal(1,1:1000,1:12), fs(1), tm] = rdsamp('00001_lr');
[signal(2,1:1000,1:12), fs(2), tm] = rdsamp('00002_lr');
[signal(3,1:1000,1:12), fs(3), tm] = rdsamp('00003_lr');
[signal(4,1:1000,1:12), fs(4), tm] = rdsamp('00004_lr');
[signal(5,1:1000,1:12), fs(5), tm] = rdsamp('00005_lr');
[signal(6,1:1000,1:12), fs(6), tm] = rdsamp('00006_lr');
[signal(7,1:1000,1:12), fs(7), tm] = rdsamp('00007_lr');
[signal(8,1:1000,1:12), fs(8), tm] = rdsamp('00009_lr');
[signal(9,1:1000,1:12), fs(9), tm] = rdsamp('00010_lr');
[signal(10,1:1000,1:12), fs(10), tm] = rdsamp('00011_lr');
[signal(11,1:1000,1:12), fs(11), tm] = rdsamp('00012_lr');
[signal(12,1:1000,1:12), fs(12), tm] = rdsamp('00013_lr');
[signal(13,1:1000,1:12), fs(13), tm] = rdsamp('00014_lr');
[signal(14,1:1000,1:12), fs(14), tm] = rdsamp('00015_lr');
[signal(15,1:1000,1:12), fs(15), tm] = rdsamp('00016_lr');
[signal(16,1:1000,1:12), fs(16), tm] = rdsamp('00019_lr');
[signal(17,1:1000,1:12), fs(17), tm] = rdsamp('00021_lr');
[signal(18,1:1000,1:12), fs(18), tm] = rdsamp('00024_lr');
[signal(19,1:1000,1:12), fs(19), tm] = rdsamp('00025_lr');
[signal(20,1:1000,1:12), fs(20), tm] = rdsamp('00027_lr');
[signal(21,1:1000,1:12), fs(21), tm] = rdsamp('00029_lr');
[signal(22,1:1000,1:12), fs(22), tm] = rdsamp('00031_lr');
[signal(23,1:1000,1:12), fs(23), tm] = rdsamp('00033_lr');
[signal(24,1:1000,1:12), fs(24), tm] = rdsamp('00035_lr');
[signal(25,1:1000,1:12), fs(25), tm] = rdsamp('00036_lr');
[signal(26,1:1000,1:12), fs(26), tm] = rdsamp('00037_lr');
[signal(27,1:1000,1:12), fs(27), tm] = rdsamp('00038_lr');
[signal(28,1:1000,1:12), fs(28), tm] = rdsamp('00040_lr');
[signal(29,1:1000,1:12), fs(29), tm] = rdsamp('00042_lr');
[signal(30,1:1000,1:12), fs(30), tm] = rdsamp('00043_lr');
%...etc
%Learning signals IMI
[signalun(1,1:1000,1:12), fsu(1), tm] = rdsamp('00008_lr');
[signalun(2,1:1000,1:12), fsu(2), tm] = rdsamp('00039_lr');
[signalun(3,1:1000,1:12), fsu(3), tm] = rdsamp('00103_lr');
[signalun(4,1:1000,1:12), fsu(4), tm] = rdsamp('00139_lr');
[signalun(5,1:1000,1:12), fsu(5), tm] = rdsamp('00142_lr');
[signalun(6,1:1000,1:12), fsu(6), tm] = rdsamp('00146_lr');
[signalun(7,1:1000,1:12), fsu(7), tm] = rdsamp('00153_lr');
[signalun(8,1:1000,1:12), fsu(8), tm] = rdsamp('00161_lr');
[signalun(9,1:1000,1:12), fsu(9), tm] = rdsamp('00175_lr');
[signalun(10,1:1000,1:12), fsu(10), tm] = rdsamp('00181_lr');
[signalun(11,1:1000,1:12), fsu(11), tm] = rdsamp('00210_lr');
[signalun(12,1:1000,1:12), fsu(12), tm] = rdsamp('00234_lr');
[signalun(13,1:1000,1:12), fsu(13), tm] = rdsamp('00240_lr');
[signalun(14,1:1000,1:12), fsu(14), tm] = rdsamp('00257_lr');
[signalun(15,1:1000,1:12), fsu(15), tm] = rdsamp('00258_lr');
[signalun(16,1:1000,1:12), fsu(16), tm] = rdsamp('00266_lr');
[signalun(17,1:1000,1:12), fsu(17), tm] = rdsamp('00267_lr');
[signalun(18,1:1000,1:12), fsu(18), tm] = rdsamp('00269_lr');
[signalun(19,1:1000,1:12), fsu(19), tm] = rdsamp('00270_lr');
[signalun(20,1:1000,1:12), fsu(20), tm] = rdsamp('00281_lr');
[signalun(21,1:1000,1:12), fsu(21), tm] = rdsamp('00290_lr');
[signalun(22,1:1000,1:12), fsu(22), tm] = rdsamp('00323_lr');
[signalun(23,1:1000,1:12), fsu(23), tm] = rdsamp('00325_lr');
[signalun(24,1:1000,1:12), fsu(24), tm] = rdsamp('00337_lr');
[signalun(25,1:1000,1:12), fsu(25), tm] = rdsamp('00380_lr');
[signalun(26,1:1000,1:12), fsu(26), tm] = rdsamp('00383_lr');
[signalun(27,1:1000,1:12), fsu(27), tm] = rdsamp('00407_lr');
[signalun(28,1:1000,1:12), fsu(28), tm] = rdsamp('00423_lr');
[signalun(29,1:1000,1:12), fsu(29), tm] = rdsamp('00429_lr');
[signalun(30,1:1000,1:12), fsu(30), tm] = rdsamp('00442_lr');
%etc
t=[];
t=[-2;2];
net = newc(minmax(t),2);
net.inputs{1}.size = 1000;
net = init(net);
d=[];
d2=[];
s=[];
su=[];
for jj=1:1:30
%clc
for jjj=1:1000
for k=1:12
s(jjj,k) = signal(jj,jjj,k);
su(jjj,k) = signalun(jj,jjj,k);
end
end
z=smoothdata(s);
zu=smoothdata(su);
x=sgolayfilt(z,0,15);
xu=sgolayfilt(zu,0,15);
net.trainParam.epochs = 500;
net=train(net,x,[1 1 1 1 1 1 1 1 1 1 1 1 ;0 0 0 0 0 0 0 0 0 0 0 0]);
net=train(net,xu,[0 0 0 0 0 0 0 0 0 0 0 0;1 1 1 1 1 1 1 1 1 1 1 1]);
end
count1 = 0;
count2 = 0;
for jj=1:1:30
%clc
for jjj=1:1000
for k=1:12
s(jjj,k) = signal(jj,jjj,k);
su(jjj,k) = signalun(jj,jjj,k);
end
end
z=smoothdata(s);
zu=smoothdata(su);
x=sgolayfilt(z,0,15);
xu=sgolayfilt(zu,0,15);
disp('перший:');
y=sim(net,x);
count = 0;
for j=1:2:23
if y(j) == 1
count=count+1;
end
end
if count > 6
count1=count1+1;
disp('перший=');
jj
end
disp('второй:');
y2=sim(net,xu);
count = 0;
for j=2:2:25
if y2(j) == 1
count=count+1;
end
end
if count > 6
count2=count2+1;
disp('второй=');
jj
end
d = [d y];
d2 = [d2 y2];
end
count1
count2
Answer the question
In order to leave comments, you need to log in
How can we "treat" the patient if he (your code) has not even been seen. What is a neuron? Self-written? Ready? What architecture? How many layers?
But what is the question -
How long is the row for training neural networks?
and so is the answer:
The longer, the better.
https://gist.github.com/miraage/d00534fedd7d330a3849
/**
* Format number from 5251.25 to "5 251.25"
*
* @param num
* @returns {string}
*/
function numberFormat(num) {
if (!isFinite(num)) {
return num;
}
var parts = num.toString().split('.');
parts[0] = parts[0].replace(/\B(?=(\d{3})+(?!\d))/g, ' ');
return parts.join('.');
}
function numberFormat(num) {
if (typeof num !== "string") {
return numberFormat(num.toString())
} else {
if (num.length < 4) {
return num
} else {
return numberFormat(num.slice(0, num.length - 3)) + " " + num.slice(num.length - 3)
}
}
}
/**
* Formats given number with comas, i.e for given
* `12345` returns `"12,345"`.
* The second (optional) argument redefines default
* thouthands delimiter (comma).
*/
thouthands: function(n, delim) {
delim = delim != undefined ? delim : ','
x = (n + '').split('.')
x1 = x[0]
x2 = x.length > 1 ? '.' + x[1] : ''
var rgx = /(\d+)(\d{3})/
while (rgx.test(x1)) {
x1 = x1.replace(rgx, '$1' + delim + '$2')
}
return x1 + x2
}
The same story, only now 10 million are broken like this 1000 0000,
100 million are broken correctly 100 000 000
1 billion is already like 100000 0000
And like this every other time
function myFunc(count){
let event = count.toFixed(2);
event = parseFloat(event);
return event.toLocaleString();
};
myFunc(1005006.525);
Didn't find what you were looking for?
Ask your questionAsk a Question
731 491 924 answers to any question