Answer the question
In order to leave comments, you need to log in
What should be the architecture of the network to search for an object in a photo?
Given: the faces of people, you need to find, let's say the eyes.
There is a dataset with eye borders in the photo (x1,y1) (x2,y2)
Will this be a regression task for the network? That is, the selection of suitable coordinates.
Is such a model suitable? the output is 4 values.
mobile_net = tf.keras.applications.MobileNetV2(input_shape=(192, 192, 3), include_top=False)
mobile_net.trainable = False
model = tf.keras.Sequential([
mobile_net,
tf.keras.layers.GlobalAveragePooling2D(),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(4, activation='sigmoid') # ?функция активации sigmoid, т.к. данные от 0 до 1
])
model.compile(optimizer="rmsprop", loss='mean_squared_error', metrics=['mae'])
# Т.к. задача регрессии, удобнее использовать mean square error(средне-квадратичная ошибка).
# В качестве метрики берем mean absolute error средняя абсолютная ошибка (MAE)
Answer the question
In order to leave comments, you need to log in
Didn't find what you were looking for?
Ask your questionAsk a Question
731 491 924 answers to any question