V
V
Virgil Merkel2020-12-15 18:27:18
Python
Virgil Merkel, 2020-12-15 18:27:18

How to fix "ValueError: Shapes (None, 5) and (None, 15) are incompatible" error?

I am writing a course project in python for recognition of car logos, I make datasets myself 30 images for 5 car brands.
I uploaded all the images to data_img
and wrote down the designations for training in data_tag_r

here is the code on google colaboratory jupiter notebook

import os
myDir = "/content/data_img/"

import numpy as np

f = open('data_tag_r', 'r')
data_tag = np.loadtxt(f)
f.close
data_tag
from keras.utils import to_categorical

data_labels = to_categorical(data_tag)
data_labels 
data_labels.shape

from keras.preprocessing.image import img_to_array
from keras.applications import imagenet_utils
import numpy as np
import cv2
import io

image = cv2.imread("/content/data_img/a0000.jpg", 0)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
print(image.shape, image.size, image.dtype)

width = 64
height = 64
dim = (width, height)
image = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
print(image.shape, image.size, image.dtype)

image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = imagenet_utils.preprocess_input(image)
print(image.shape, image.size, image.dtype)

data_images = []
fileList = os.listdir("/content/data_img/")
width = 512
height = 512
dim = (width, height)
for i, filename in enumerate(fileList) :
    img_file = '/content/data_img/'+ filename
    image = cv2.imread(img_file, 0)
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
    image = img_to_array(image)
    #image = np.expand_dims(image, axis=0)
    #image = imagenet_utils.preprocess_input(image)
    data_images.append(image)
    
data_images = np.array(data_images) / 255
data_images.shape

data_images

x_train = data_images[:]
# x_test = data_images[10:]

y_train = data_labels[:]
# y_test = data_labels[10:]

from keras import models
from keras import layers

network = models.Sequential()
network.add(layers.Conv2D(32, (5, 5), activation='relu', input_shape=(width,height,3)))
network.add(layers.MaxPooling2D((2, 2)))
network.add(layers.Conv2D(64, (3, 3), activation='relu'))
network.add(layers.MaxPooling2D((2, 2)))
network.add(layers.Conv2D(128, (3, 3), activation='relu'))
network.add(layers.MaxPooling2D((2, 2)))
network.add(layers.Conv2D(256, (3, 3), activation='relu'))
network.add(layers.MaxPooling2D((2, 2)))
network.add(layers.Flatten())
network.add(layers.Dense(256, activation='relu'))
network.add(layers.Dense(64, activation='relu'))
network.add(layers.Dense(15, activation='softmax'))
network.summary()

network.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'] )


### И вот тут у меня ошибки выходят ###

# network.fit(x_train, y_train, epochs=20, batch_size=8, validation_data=(x_test, y_test))
network.fit(x_train, y_train, epochs=3, batch_size=8)

### /И вот тут у меня ошибки выходят ###


/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/tensor_shape.py:1134 assert_is_compatible_with
        raise ValueError("Shapes %s and %s are incompatible" % (self, other))

    ValueError: Shapes (None, 5) and (None, 15) are incompatible


/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in _method_wrapper(self, *args, **kwargs)
    106   def _method_wrapper(self, *args, **kwargs):
    107     if not self._in_multi_worker_mode():  # pylint: disable=protected-access
--> 108       return method(self, *args, **kwargs)
    109 
    110     # Running inside `run_distribute_coordinator` already.

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
   1096                 batch_size=batch_size):
   1097               callbacks.on_train_batch_begin(step)
-> 1098               tmp_logs = train_function(iterator)
   1099               if data_handler.should_sync:
   1100                 context.async_wait()

Answer the question

In order to leave comments, you need to log in

1 answer(s)
V
Virgil Merkel, 2020-12-15
@blrmyfc

sorry, blunted
network.add(layers.Dense(15, activation='softmax')) I had to do
network.add(layers.Dense(5, activation='softmax')) because I only have 5 options

Didn't find what you were looking for?

Ask your question

Ask a Question

731 491 924 answers to any question